EconPapers    
Economics at your fingertips  
 

Capacity fade prediction for vanadium redox flow batteries during long-term operations

Wen-Jiang Zou, Young-Bae Kim and Seunghun Jung

Applied Energy, 2024, vol. 356, issue C, No S0306261923016938

Abstract: In this paper, a dynamic prediction model for electrolyte capacity fade in vanadium redox flow batteries (VRFBs) is proposed. The capacity fade characteristics of VRFBs were analyzed quantitatively from both microscopic ions crossover and macroscopic electrolyte volumetric change perspectives. The dynamic behavior of vanadium ions (V2+, V3+, VO2+, and VO+ 2), protons, and water molecules in VRFB half-cells and electrolyte tanks has been thoroughly explored. The parameters related to the capacity fade were obtained from a self-discharge test and formation charge processes. The accuracy of the proposed model was experimentally validated using a unit cell (25 cm2) in a long-term operation. The results reveal that after 200 continuous charge/discharge cycles (duration of 739,257 s) with a current density of 80 mA cm2, the model can accurately predict changes in electrolyte volume and capacity fade with errors of 0.632 mL and 0.0295 Ah, respectively. The electrolyte capacity fade under various current densities for long-term operations has also been predicted by the model and experimentally validated. Under all current densities applied to the VRFB, the discrepancies between simulation and experimental results for electrolyte volume change and capacity fade were <8.46% and 4.99%, respectively. The proposed model significantly improves the accessibility and reliability of accurate capacity fade prediction for VRFBs, enhancing the competitiveness of VRFBs in energy storage applications.

Keywords: Vanadium redox flow battery; Capacity fade; Dynamic prediction model; Vanadium ions crossover; Water transfer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923016938
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016938

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122329

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016938