Spatio-temporal smoothing and dynamics of different electricity flexibility options for highly renewable energy systems—Case study for Norway
Aleksander Grochowicz,
Fred Espen Benth and
Marianne Zeyringer
Applied Energy, 2024, vol. 356, issue C, No S0306261923017026
Abstract:
In this article, we investigate the mismatch of renewable electricity production to demand and how flexibility options enabling spatial and temporal smoothing can reduce risks of variability. As a case study we pick a simplified (partial) 2-region representation of the Norwegian electricity system and focus on wind power. We represent regional electricity production and demand through two stochastic processes: the wind capacity factors are modelled as a two-dimensional Ornstein–Uhlenbeck process and electricity demand consists of realistic base load and temperature-induced load coming from a deseasonalised autoregressive process. We validate these processes, that we have trained on historical data, through Monte Carlo simulations allowing us to generate many statistically representative weather years. For the investigated realisations (weather years) we study deviations of production from demand under different wind capacities, and introduce different scenarios where flexibility options like storage and transmission are available. Our analysis shows that simulated loss values are reduced significantly by cooperation between regions and either mode of flexibility. Combining storage and transmission leads to even more synergies and helps to stabilise production levels and thus reduces likelihoods of inadequacy of renewable power systems.
Keywords: Weather uncertainty; Wind power; Energy security; Ornstein–Uhlenbeck process; Variance minimisation; Flexibility (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017026
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122338
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().