EconPapers    
Economics at your fingertips  
 

Structural optimization and performance testing of concentrated photovoltaic panels for pavement

Hengwu Hu, Xudong Zha, Chao Niu, Ziwei Wang and Ruidong Lv

Applied Energy, 2024, vol. 356, issue C, No S0306261923017269

Abstract: Solar pavement can convert sunlight shining on the pavement surface into clean electricity through photovoltaic panels, thereby transforming the energy structure of road transportation. In order to balance the light transmittance and anti-skid resistance of the solar pavement surface, this study proposed a concentrated photovoltaic panel (CPP) structure for pavement. The panel structure was optimized, and a laboratory model was developed. The mechanical properties and durability of the panel were tested by the multi-functional material test system (MTS) and the model mobile load simulator 3 (MMLS3). Furthermore, the electrical performance was evaluated by an outdoor test, followed by an economic evaluation. The results show that the optimal structural dimensions of the CPP for pavement are 540 mm long × 540 mm in length × 144.62 mm in thickness. The maximum flexural tensile strength of its anti-skid concentrated panel is 61.67 MPa, satisfying the requirements of the traffic load. After 1.35 million cycles of loading, the surface of the anti-skid concentrated panel is free of cracks and deformation and has no obvious wear, exhibiting good transmittance durability and excellent wear resistance. In addition, the overall structure of the panel counteracts the light loss effect of the material and improves the light concentration performance, providing a gain effect on the power generation of the panel, especially in the case of high irradiance. The return on investment (ROI) of CPP for pavement is 54.42%, with cost recovery in 9.87 years. The levelized cost of energy is 0.67 CNY/kWh, indicating significant economic benefits. At the same time, 1539.3 kg/m2 of CO2 emissions can be avoided during the operation cycle, and the environmental benefits are also considerable. This study can provide a reference for the promotion and application of photovoltaic power generation technology in road engineering.

Keywords: Road engineering; Solar pavement; Photovoltaic power generation; Light transmittance; Anti-skid performance; Economic evaluation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017269
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017269

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122362

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017269