Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform
Tianshu Dong,
Xiudong Duan,
Yuanyuan Huang,
Danji Huang,
Yingdong Luo,
Ziyu Liu,
Xiaomeng Ai,
Jiakun Fang and
Chaolong Song
Applied Energy, 2024, vol. 356, issue C, No S0306261923017403
Abstract:
Electrochemical water splitting plays a vital role for production of hydrogen (H2). Enhancing the rate of hydrogen separation from the electrode is crucial for improving the performance of water electrolyzers. The water electrolyzers often encounter issues such as air bubble adhesion to the electrode plate, leading to increased electrical resistance, reduced current density, and thus lower hydrogen generation rates. In addition, the compact configuration of electrolyzer and non-transparent electrode plates make it impracticable to observe and analyze the gas-liquid two-phase flow between the anode and cathode plates. Hence, a methodology is in high demand to experimentally investigate the two-phase flow within the electrolyzer, which could be further used to guide the design and optimization of the electrolyzer. In this work, we propose to utilize a microfluidic system as a phantom of electrolyzer. The transparent material of the microfluidic chip allows optical inspection and measurement of the two-phase flow. Specifically, we propose to optimize the two-phase flow by manipulating the micro-structure of the flow, which has been theoretically and experimentally demonstrated to effectively remove the gas bubbles attached to the wall and consequently enhance the hydrogen production rate. The dimensions of the proposed micro-structures can be potentially extended and applied to industrial electrolyzers according to the principle of similarity.
Keywords: Electrolyzer; Hydrogen production; Microfluidic system; Two-phase flow; Optimizing micro-structures (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017403
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017403
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122376
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().