State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network
Yue Zhang,
Yeqin Wang,
Chu Zhang,
Xiujie Qiao,
Yida Ge,
Xi Li,
Tian Peng and
Muhammad Shahzad Nazir
Applied Energy, 2024, vol. 356, issue C, No S0306261923017816
Abstract:
Accurate estimation of State of Health (SOH) is crucial to ensure optimal performance and safe operation of lithium-ion battery. This paper proposes a Stacking ensemble learning paradigm for SOH estimation. The Stacking ensemble learning increases adaptability to different features by using base learners with different structures, reducing the risk of overfitting. The model utilizes random vector functional link (RVFL) and active state tracking long-short-term memory network (AST-LSTM) as base learners, where AST-LSTM actively tracks long-term information of lithium-ion battery, and RVFL acts as the meta-learner for stacking. The random vector functional link network helps to avoid the problem of gradient vanishing that is commonly encountered in neural networks due to the gradient descent principle. To further improve estimation accuracy, Singer initialization method and dimension learning method are employed to enhance the Heap-based optimization (HBO) algorithm. In this study, the IHBO algorithm is used to optimize the hyperparameters of the model. Comparing with other methods, the hybrid model proposed in this paper demonstrates superior estimation performance under different operating conditions: at a temperature of 24 °C with a discharge current of 1 A, at a temperature of 4 °C with a discharge current of 1 A, and at a temperature of 4 °C with a discharge current of 2 A. The highest RMSE of the proposed method for the three working conditions are 0.006, 0.01, and 0.017, respectively. Therefore, the proposed Stacking ensemble learning is feasible for SOH estimation of lithium-ion battery and can better adapt to lithium-ion battery data under different operating conditions.
Keywords: State of health estimation; ASTLSTM; RVFL; Heap-based optimizer; Stacking ensemble learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017816
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122417
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().