Assessment of feasible site locations for biofuel production based on technoeconomic modelling and GHG impact analysis
Andreas Krogh,
Eliana M. Lozano,
Jeppe Grue and
Thomas H. Pedersen
Applied Energy, 2024, vol. 356, issue C, No S030626192301797X
Abstract:
Large scale bioenergy is expected to play an increasing role in the industry, heat and power production and transportation in the future. Both biomass availability and cost-effective mobilization are necessary to facilitate large bioenergy production sites. This study uses a Geographical Information System approach to map the economic and environmental feasibility of future biofuel production sites via Hydrothermal Liquefaction. The methodology includes process modelling, biomass and infrastructure mapping, technoeconomic analysis and greenhouse gas impact assessment and is implemented having Denmark as case study. Three supply-chains were evaluated for the upgrading of the biofuel which are chemical stabilizing, on-site hydrotreating, and centralised hydrotreating. The two feedstocks assessed were imported forestry and domestic agricultural residue resulting in a total of six different implementation scenarios. The results for the case study indicate that for forestry residue the proximity to an industrial port is the most dominating factor when determining feasible site locations. The performance in the agricultural residue scenarios is more impacted by infrastructure parameters. In the on-site hydrotreating scenario the best performing locations are found close to the hydrogen line to reduce connection expenses. For centralised hydrotreating the results favour being close to existing refineries to reduce intermediate transportation of the biocrude.
Keywords: Bioenergy; Hydrothermal liquefaction; Geographical information system; Site selection; Technoeconomic assessment; GHG analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301797X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s030626192301797x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122433
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().