EconPapers    
Economics at your fingertips  
 

Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?

Yinghao Chu, Dazhi Yang, Hanxin Yu, Xin Zhao and Mengying Li

Applied Energy, 2024, vol. 356, issue C, No S0306261923017981

Abstract: As a crucial component of the model chain, which facilitates irradiance-to-power conversion during solar resource assessment and forecasting, separation modeling continues to draw attention in both academia and industry. However, when evaluating even the best separation model today, one can quickly recognize its limited accuracy compared to other energy meteorology models such as transposition models. The task of separating global horizontal irradiance into diffuse and beam components does not seem soluble by any derivative effort aimed at tweaking the existing semi-physical models. As a result, an appealing alternative is to consider end-to-end data-driven models, which have demonstrated predictive capability in scenarios where the volume of data is substantial and the interaction among variables is complex. This work discusses the separation of 1-min irradiance from a data-driven perspective. In this preliminary study, a total of 10 representative data-driven separation models are developed and compared to the state-of-the-art semi-physical models, using a comprehensive 1-min irradiance database that spans five years and covers numerous climate types. The average error of the data-driven models is found to be 15.2% to 22.6% lower than that of the semi-physical models for training locations and 7.9% to 17.6% lower for completely unseen locations. Data-driven models also have significantly lower standard deviations (up to 87.2% even for completely unseen locations), highlighting their robustness. In addition, this work provides a guideline for choosing between data-driven and semi-physical models based on data availability, application needs, computational resources, interpretability, and model adaptability. Furthermore, the study underscores the challenges in accurately predicting the diffuse fraction using available input features and indicates that the incorporation of additional weather-related variables and domain knowledge could enhance the performance of data-driven separation models.

Keywords: Solar radiation modeling; Separation modeling; Diffuse radiation; Benchmarking data; Data-driven models (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017981
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017981

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122434

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017981