Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis
Ziyang Qiu,
Jingchao Sun,
Tao Du,
Hongming Na,
Lei Zhang,
Yuxing Yuan and
Yisong Wang
Applied Energy, 2024, vol. 356, issue C, No S0306261923018160
Abstract:
The development of hydrogen metallurgy holds enormous significance in facilitating the low-carbon and environmentally sustainable transition of iron and steel industries. However, there is a lack of research on the impact of implementing hydrogen metallurgy on the downstream process and even the whole process. To fill this research gap, a model that considers specific internal reactions of steelmaking process was developed utilizing the bottom-up approach. Subsequently, by integrating the hydrogen metallurgy process with the traditional long process and short process, the energy intensity, exergy intensity and carbon emission intensity were quantitatively analyzed from multiple viewpoints. The results of the basic oxygen furnace (BOF) and electric arc furnace (EAF) exhibit a degree of similarity, with an increase in directly reduced iron (DRI) addition, resulting in an insufficient heat and an increase in process energy consumption, exergy loss, and carbon emissions. But there are also some subtle differences, such as oxygen consumption. Following the integration of hydrogen metallurgy, the energy intensity and exergy intensity of the BF-BOF process increase 11.984 kgce/t-CS and 3.083 × 102 MJ/t-CS, respectively. However, the carbon emission intensity decreased by 46.514 kg/t-CS. The integrated Chinese-style short process has the lowest carbon emission intensity of 879.664 kg/t-CS at 40% DRI and 60% scrap. Nevertheless, the energy intensity and exergy intensity have increased by 27.383 kgce/t-CS and 42.012 × 102 MJ/t-CS respectively compared to their initial values. It is noteworthy that the process of hydrogen production plays a significant role in mitigating the exergy intensity and carbon emission intensity.
Keywords: Hydrogen metallurgy integration; Material-exergy-emission nexus; Energy intensity; Exergy intensity; Carbon emission intensity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923018160
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122452
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().