EconPapers    
Economics at your fingertips  
 

A fast battery balance method for a modular-reconfigurable battery energy storage system

Huizhen Huang, Amer M.Y.M. Ghias, Pablo Acuna, Zhaoyang Dong, Junhua Zhao and Md. Shamim Reza

Applied Energy, 2024, vol. 356, issue C, No S0306261923018342

Abstract: Battery energy storage systems (BESSs) are widely utilized in various applications, e.g. electric vehicles, microgrids, and data centres. However, the structure of multiple cell/module/pack BESSs causes a battery imbalance problem that severely affects BESS reliability, capacity utilization, and battery lifespan. The available balance schemes introduce extra equalizers and suffer from slow balance speed due to the equalizer limits. To tackle this issue, a modular reconfigurable BESS (MR-BESS) topology is introduced in this paper, for which a fast battery balance method is proposed. This combination provides reconfiguration flexibility and fault tolerance capability without the need for any extra components, such as equalizers. Experimental results were performed on a scale-down prototype to verify the operation of the proposed reconfigurable BESS topology and the effectiveness of the fast battery balance method.

Keywords: Battery energy storage system; Reconfiguration; Battery cell balance (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018342
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923018342

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122470

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923018342