A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm
Chen Wang,
Qijiao He,
Zheng Li,
Jie Yu,
Idris Temitope Bello,
Keqing Zheng,
Minfang Han and
Meng Ni
Applied Energy, 2024, vol. 357, issue C, No S0306261923013946
Abstract:
The pursuit of higher power density and compact structure presents a critical challenge to the thermal management of solid oxide fuel cell. In this study, a novel in-tube reformer is proposed and a Multi-physics simulation-Artificial neural network-Multi-objective genetic algorism based optimization framework is developed to improve the output performance and reduce the internal temperature difference in solid oxide fuel cell. First, a validated multi-physics model is developed for parametric simulation and generating dataset. Afterwards, a surrogate model is obtained by training an artificial neural network to predict the output performance and internal temperature field of solid oxide fuel cell. Finally, multi-objective genetic algorithm optimizations based on the surrogate model are performed to maximize the output performance and minimize the internal temperature difference under different operation strategies. It is found that compared to the conventional configuration (without in-tube reformer), the use of in-tube reformer can effectively promote the electrochemical reactions, increase the fuel utilization (up to 34.2%) and current density (up to 14.5%) while significantly reducing the maximum temperature difference (up to 85.5%) in the cell, resulting in a uniform current density and temperature distribution along the cell. The proposed novel in-tube reformer and optimization framework are demonstrated to be highly powerful and can be easily applied to other fuel cell/electrolyzer systems to effectively improve system performance and realize efficient thermal management under actual demands.
Keywords: Solid oxide fuel cell; Internal reforming; Artificial neural network; Multi-objective genetic algorithm; Thermal management (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013946
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923013946
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().