Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets
Bo Zeng,
Yinyu Zhou,
Xinzhu Xu and
Danting Cai
Applied Energy, 2024, vol. 357, issue C, No S0306261923017701
Abstract:
With the prevalence of cloud computing applications, cloud data centers (CDCs) are proliferating around the world. However, in the context of hybrid energy‑carbon markets environment, the high energy costs and environmental expenses caused by CDC operation are pressing CDC owners to restructure the future development of CDC in a more economical and low-carbon manner. The potential spatio-temporal transferability and reducibility of workloads provides CDCs with significant flexibility in their operations and thus may interact with the power grid as active demand users. Nonetheless, other than private data centers, public CDCs have no direct control over the workloads submitted by terminal cloud users. As such, this paper presents a bi-level model for CDC allocation planning, so as to incorporate cloud service-demand response (CS-DR) from the perspective of a hybrid electricity-carbon market. The upper level pertains to multi-domain resource collaborative planning model, which determines the optimum siting and sizing of CDCs as well as the incentive design for CS-DR program, with the objective of maximizing the total expected benefits of CDC. The lower level models correspond to the market clearing (electricity-carbon tariff model) of Independent system operator (ISO) and the decision-making of cloud users regarding CS-DR participation. The proposed model belongs to a bi-level mixed integer nonlinear programming problem with two non-convex lower levels, which can be intractable in mathematics. To solve such difficult problem, a hybrid solution method combining multiple linearization techniques and reformulation and decomposition (R&D) strategy based on column-and-constraint generation (C&CG) algorithm is developed. The proposed model is demonstrated on a modified IEEE 30-bus test case, and the simulation results verified the effectiveness of the proposed approach.
Keywords: Cloud data center; Demand-side flexibility; Cloud users; Bi-level programming; Electricity-carbon market; Allocation planning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017701
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923017701
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122406
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().