EconPapers    
Economics at your fingertips  
 

Thermodynamic and environmental analysis of an integrated multi-effect evaporation and organic wastewater supercritical water gasification system for hydrogen production

Xingang Qi, Zhenhua Ren, Fanrui Meng, Libo Lu, Fan Liu, Xunjun Li, Hui Jin, Yunan Chen and Liejin Guo

Applied Energy, 2024, vol. 357, issue C, No S0306261923018135

Abstract: Organic wastewater poses significant environmental and human health risks. Supercritical water gasification (SCWG) presents a promising approach for converting organic waste into hydrogen-rich mixed gases. Nevertheless, the high moisture content present in organic wastewater hampers the energy efficiency of the SCWG process. To tackle this challenge, we have designed and developed an organic wastewater SCWG hydrogen production system incorporating a multi-effect evaporator. The developed system demonstrates the ability to achieve autothermal conditions for the treatment of swine wastewater with a solids concentration of 4.3%. Notably, this system exhibits impressive energy efficiency, reaching a maximum value of 44.88%, along with an exergy efficiency of 33.90% when processing 7% swine wastewater. Exergy analysis further reveals that the incorporation of a multi-effect evaporator leads to a reduction in exergy destruction within the gasification unit, oxidation unit, and heat exchanger. These improvements highlight the positive impact of the multi-effect evaporator on the overall performance of the supercritical water gasification system. Sensitivity analysis indicated that suitable concentrated concentration and an appropriate amount of preheated water can improve hydrogen production. The system minimum GWP reaches 5.27 kgCO2-eq/kgH2 after adding the CCUS. This work expands the range of applicable feedstocks for the autothermal SCWG process.

Keywords: Supercritical water gasification; Organic wastewater; Thermodynamic analysis; Multi-effect evaporation; Hydrogen production (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018135
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018135

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122449

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018135