A linear Distflow model considering line shunts for fast calculation and voltage control of power distribution systems
Hanyang Lin,
Xinwei Shen,
Ye Guo,
Tao Ding and
Hongbin Sun
Applied Energy, 2024, vol. 357, issue C, No S0306261923018317
Abstract:
The line shunts are usually ignored by various linear power flow (PF) models in power distribution system analysis, planning and optimization. However, “charging effects” from line shunts of underground/submarine power cables would cause non-negligible model errors for these commonly used PF models. In this paper, we propose a modified Linear Distflow model (LinDist) with line shunts, i.e., LinDistS. We also further propose its extensions considering the ZIP load, weakly-meshed topology and unbalanced three-phase systems. Moreover, the linearization error of voltage component is theoretically analyzed. Case studies show that compared with other models, the proposed LinDistS achieves the descent calculation accuracy and efficiency. We also show the application scope of LinDistS by a Volt/VAr control (VVC) framework with distributed generators, mainly photovoltaic (PV), and the non-negligible “charging effect”. Simulation exhibits that with LinDistS, the VVC can optimally dispatch the shunt capacitors and also optimize the real-time reactive power output of PV. Moreover, with LinDistS, the VVC shows better solutions’ consistency and higher computing efficiency compared to traditional VVC methods.
Keywords: Distflow model; Line shunts; Linear power flow model; Volt/VAr control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018317
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122467
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().