EconPapers    
Economics at your fingertips  
 

Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries

Chi-Jyun Ko and Kuo-Ching Chen

Applied Energy, 2024, vol. 357, issue C, No S0306261923018524

Abstract: Relaxation voltage (RV) of a battery is informative since it not only approximates open circuit voltage (OCV) as time evolves, but it is also related to the battery's state of charge (SOC) and state of health (SOH). Given that RV is easy to obtain by simply stopping a battery's operation, it is an excellent data source to estimate battery states. Without using complete RV history whose acquisition is time-consuming and hinders further applications, this study uses Gaussian process regression model with the input of only a small portion of RV to rapidly and simultaneously estimate the OCV and SOH of a battery. Various input lengths are tested, showing that using only 30-s RV data, the mean absolute error (MAE) for predicting OCV is 2.99 mV, and that for estimating SOH is 2.76%. As soon as the voltage difference is also treated as the model input, we find that the MAE for the SOH estimation is further declined to about 1.83%. Compared to previous methods which either estimate single battery state or require minutes of RV data for estimation, the current model is able to perform multiple battery estimation using only first tens of seconds of data.

Keywords: Lithium-ion battery; Relaxation voltage; Open circuit voltage; State of health; Gaussian process regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018524
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018524

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122488

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018524