EconPapers    
Economics at your fingertips  
 

Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage

Yunren Sui, Haosheng Lin, Zhixiong Ding, Fuxiang Li, Zengguang Sui and Wei Wu

Applied Energy, 2024, vol. 357, issue C, No S0306261923018688

Abstract: The growing penetration of renewable energy poses significant challenges to the stability of the power grid, necessitating the development of advanced energy storage systems to facilitate power grid decarbonization with enhanced flexibility. Nonetheless, current energy storage technologies face obstacles including geographical constraints, high expenses, and short lifespans. In this work, a novel Carnot battery (power-heat-power conversion) based on absorption-desorption processes of hygroscopic salt solutions, absorption Carnot battery (ACB), is proposed for large-scale renewable energy storage with remarkable energy storage density (ESD), competitive round-trip efficiency (RTE), and negligible self-discharging rate (SDR). Through the integration of heat-generation, heat-storage, and power-generation sub-cycles into a single compact system, the ACB can save space and cost compared to previous Carnot batteries. A dynamic model is established with high accuracies to explore the characteristics of the proposed system. The dynamic temperatures, pressures, concentrations, mass flow rates, powers, and efficiencies of the ACB are analyzed to elucidate its energy conversion/storage mechanism. Based on the multi-objective optimization, the optimum operating concentration range of [45%, 60%] is determined, demonstrating the best comprehensive performance with an RTE of 45.80% and an ESD of 16.26 kWh/m3. Compared to the existing energy storage systems, the ACB stands out due to the competitive RTEs (30.5%–48.4%) and higher ESDs (7.6–21.8 kWh/m3). Even during an 80-day standby period, the ACB exhibits a small SDR of only 0.74%, which is significantly lower than that of Rankine pumped thermal energy storage (RPTES) at 33.01%. Despite the ACB yields a higher initial cost, it demonstrates a markedly lower levelized cost of storage (0.342 $/kWh) compared to the RPTES (0.749 $/kWh) because of its higher ESD, thus confirming the economic feasibility of the proposed system.

Keywords: Carnot battery; Renewable energy storage; Round-trip efficiency; Energy storage density; Self-discharging rate; Levelized cost of storage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018688
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018688

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122504

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018688