Dispersed Bi2S3 site in a porphyrin-based metal–organic framework for photocatalytic nitrogen fixation
Chunchao Chen,
Rui Ji,
Xiaoyong Xia,
Liujun Jin,
Kaiyuan Deng,
Qingfeng Xu and
Jianmei Lu
Applied Energy, 2024, vol. 357, issue C, No S030626192301872X
Abstract:
The development of suitable alternatives to the energy-intensive and seriously polluting Haber–Bosch process for ammonia production is crucial. Photocatalytic nitrogen fixation has attracted extensive research attention as a pollution-free, low-cost, and sustainable ammonia production process. However, most reported photocatalysts so far have relatively low conversion rates for N2 reduction. Herein, we employed a strategy based on bismuth precoordination and in-situ sulfurization strategy to grow highly dispersed bismuth sulfide (Bi2S3) on a porous coordination network (PCN) metal–organic framework. The as-fabricated photocatalyst (Bi2S3@PCN-2) with high-density heterojunctions was used for the photocatalytic nitrogen fixation for ammonia production and degradation of bisphenol A, achieving an ammonia production rate of 3880 μg h−1 g−1 and a 96.4% degradation efficiency for bisphenol A within 30 min in the absence of a sacrificial agent. The abundant porphyrin rings and highly dispersed Bi2S3 broadened the visible-light absorption range of the photocatalyst, leading to numerous photogenerated charge carriers. Additionally, the high-density heterojunctions facilitated the separation of photogenerated electron–hole pairs, resulting in excellent photocatalytic performance. This work provides a new approach for the design and preparation of bifunctional photocatalysts.
Keywords: Heterojunction; Photocatalysis; Nitrogen fixation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301872X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s030626192301872x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122508
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().