EconPapers    
Economics at your fingertips  
 

Effects of PEMFC cooling channel insulation coating on heat transfer and electrical discharge characteristics of nanofluid coolants

Haoran Ma, Junheng Liu, Wenwen Liang, Jiyu Li, Wenyao Zhao, Ping Sun and Qian Ji

Applied Energy, 2024, vol. 357, issue C, No S0306261923018780

Abstract: Nanofluids have high thermal conductivity and electrical conductivity, and there is a problem of electrical discharge when used as a coolant in proton exchange membrane fuel cell (PEMFC). In this study, the compact Al2O3 insulating coating was prepared by supersonic plasma spray processing technology and evenly coated in the cooling channel. The electrical discharge effect and heat transfer enhancement ability of three coolants, namely deionized water, Al2O3 nanofluid and graphene nanofluid, were studied when applied in the electrically active atmosphere of PEMFC. The results show that, the graphene nanofluid has the best heat transfer performance before insulation coating integration, but the dispersion of solid nanoparticles in the base fluid leads to a higher pressure drop, with an increase of 6.7%. When the voltage is 200 V, the leakage current of Al2O3 nanofluid and graphene nanofluid is up to 16 mA and 33 mA respectively. After insulation coating integration, the index of uniform temperature (IUT) and maximum temperature of graphene nanofluids further decrease, while the pressure drop increases by 7.0%. The leakage current of all three coolants at different voltages and Re numbers decrease to 0, indicating a significant improvement in the insulation performance of PEMFC cooling channel. In addition, dimensionless evaluation parameter ε for the applicability of heat transfer fluids were proposed from the perspectives of work and energy. Within the pump power range of 0.0065 W ∼ 0.0325 W, the ε of graphene nanofluids with insulating coating is always lower than Al2O3 nanofluid. At the pump power of 0.014 W, the ε of graphene nanofluids with insulating coating is 0.76, which has the best coolant applicability when applied in the electrically active atmosphere of PEMFC.

Keywords: Proton exchange membrane fuel cell; Cooling system; Nanofluid coolant; Heat transfer; Electrical discharge; Insulation coating (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018780
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018780

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122514

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018780