EconPapers    
Economics at your fingertips  
 

Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers

Haoran Cheng, Yanghong Xia, Zhiyuan Hu and Wei Wei

Applied Energy, 2024, vol. 358, issue C, No S0306261923018743

Abstract: Alkaline water electrolysis is considered as the most feasible way to realize large-scale hydrogen production from renewable energy sources. However, the poor efficiency performance in low load limits the wide-range operation of alkaline water electrolyzers. The energy loss caused by the parasitic current is the main reason of the poor efficiency in low load. Based on the electrolyzer internal structure, an improved model of alkaline water electrolyzers is proposed and the inefficiency mechanism is illustrated. It is found that by applying pulse current for electrolysis, the efficiency of hydrogen production in low load can be enhanced greatly. The influence of the pulse current magnitude and duty ratio on the efficiency improvement is studied. Under different operation conditions, they can be regulated to achieve the maximum efficiency of hydrogen production. The electrolyzer parameters also affect the efficiency trend, especially the double layer capacitance. Finally, the results are experimentally verified on a 10 kW alkaline water electrolyzer.

Keywords: Hydrogen; Water electrolysis; Renewable energy; Pulse; Efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018743
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261923018743

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122510

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923018743