EconPapers    
Economics at your fingertips  
 

Discrete optimal power flow with prohibited zones, multiple-fuel options, and practical operational rules for control devices

Marina Valença Alencar, Diego Nunes da Silva, Leonardo Nepomuceno, André Christóvão Pio Martins, Antonio Roberto Balbo and Edilaine Martins Soler

Applied Energy, 2024, vol. 358, issue C, No S0306261923019098

Abstract: Although the optimal power flow (OPF) problem has been extensively studied, solving realistic OPF models that accurately represent the operating behavior of power system components remains challenging. This paper proposes a novel model for the AC OPF problem, aiming to minimize the fuel costs of thermal units while taking into account valve-point loading effects (VPLE), prohibited operation zones (POZ), multiple fuel options (MFO), and operational rules associated with the discrete tap ratios of on-load tap changer (OLTC) transformers and with the discrete shunt susceptances of capacitor/reactor banks. These rules are represented using complementarity constraints. We propose a solution approach that integrates several strategies to address the non-smooth features of the objective function related to VPLE, the disjoint constraints and functions tied to POZ and MFO, the discrete characteristics of the reactive control variables, and the complementarity constraints governing operational rules linked to voltage control devices such as OLTC transformers and capacitor/reactor banks. The resulting optimization problem is designed to be compatible with commercial solver packages. Numerical tests on the IEEE 30, 118, and 300-bus systems aim to examine the cumulative impact of these operational factors on the optimal solution. The solution strategy proposed has demonstrated its effectiveness in solving the proposed OPF problem within reasonable computation times.

Keywords: Optimal power flow; Mixed integer nonlinear programming; Complementarity constraints; Disjoint constraints; Branch-and-bound (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923019098
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019098

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122545

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019098