EconPapers    
Economics at your fingertips  
 

Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change

Teodoro Semeraro, Aurelia Scarano, Lorenzo Maria Curci, Angelo Leggieri, Marcello Lenucci, Alberto Basset, Angelo Santino, Gabriella Piro and Monica De Caroli

Applied Energy, 2024, vol. 358, issue C, No S0306261923019293

Abstract: Photovoltaic (PV) systems play an important role in the sustainable energy transition, but their impact on food security is ambiguous due to the shift in land use from agriculture to energy production. Currently, agrivoltaic is emerging as an alternative sustainable energy source that optimises multifunctional land use by simultaneously supporting electricity generation and agricultural activities. While many studies have extolled the benefits of shade provided by agrivoltaic on crop water balance and evapotranspiration, plant ecological adaptation, such as Shade Avoidance Syndrome (SAS), and its implications for food security remain relatively unexplored. In this context, we have investigated the influence of a panel-generated shadow on chicory crop production in terms of plant biomass yield and its quality for human health under different water irrigation regimes. For each chicory plant, fresh weight and leaf dimensions were measured to estimate edible biomass, while leaf water content, chlorophylls a and b, carotenoids, metabolite profile and antioxidant capacity were evaluated to assess food quality. Our results show that the shading system has a remarkable capacity to increase edible chicory biomass production compared to full sunlight conditions of 69% and 23%, respectively for high water supply and low water supply, and greater capacity to promote pollination ecosystem services. The shade, provided by a well-designed agrivoltaic system, improves SAS and directly increase yield without altering food quality. Thus, agrivoltaic systems can combine renewable energy strategies with food security, while enhancing ecosystem services for human well-being.

Keywords: Shade Avoidance Syndrome; Human Health; Food Quality; Food Production; Renewable Energy; Ecosystem Services (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923019293
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019293

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122565

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019293