A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data
M. Lopez-Juarez,
T. Rockstroh,
R. Novella and
R. Vijayagopal
Applied Energy, 2024, vol. 358, issue C, No S0306261923019323
Abstract:
Fuel cell (FC) technology has been identified as a technically attractive solution to decarbonize the transportation sector, especially for heavy-duty vehicles. In this context, the industry and the scientific community are in need of advanced fuel cell systems (FCS) models that are able to replicate real-world operating conditions. Due to the scarcity of said models in the open literature, this study aimed to develop a comprehensive methodology to calibrate and validate multi-physics dynamic FCS models. Therefore, the key contribution of this paper is the detailed description of the calibration process for each component and the calibration order. The specific focus here was to accurately describe the behavior of the FC stack as well as the cathode, anode, and cooling circuits of the balance of plant. The model was calibrated with the aid of experimental data from a Toyota Mirai FC electric vehicle, which was predominantly retrieved from the vehicle’s Controller Area Network (CAN) bus system thereby negating the need for major intrusion into the powertrain system. The validation process was deemed successful with the model being able to truthfully replicate the characteristics of the FC vehicle operated on the World-wide harmonized Light duty Test Cycle (WLTC) 3b and US06 driving cycle. The time-resolved physical parameters such as the cathode pressure, mass flow, or the FC stack temperature were captured with high fidelity, while the overall performance parameters such as the H2 consumption in the stack and the system, and the compressor energy consumption were predicted accurately with a deviation lower than 0.47%, 1.75% and 1.89% with respect to the experimental data, respectively.
Keywords: Hydrogen; Proton Exchange Membrane Fuel Cell; Simulation; Dynamic model; Fuel cell electric vehicle; Driving cycle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923019323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019323
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122568
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().