Physics-informed graphical neural network for power system state estimation
Quang-Ha Ngo,
Bang L.H. Nguyen,
Tuyen V. Vu,
Jianhua Zhang and
Tuan Ngo
Applied Energy, 2024, vol. 358, issue C, No S0306261923019669
Abstract:
State estimation is highly critical for accurately observing the dynamic behavior of the power grids and minimizing risks from cyber threats. However, existing state estimation methods encounter challenges in accurately capturing power system dynamics, primarily because of limitations in encoding the grid topology and sparse measurements. This paper proposes a physics-informed graphical learning state estimation method to address these limitations by leveraging both domain physical knowledge and a graph neural network (GNN). We employ a GNN architecture that can handle the graph-structured data of power systems more effectively than traditional data-driven methods. The physics-based knowledge is constructed from the branch current formulation, making the approach adaptable to both transmission and distribution systems. The validation results of three IEEE test systems show that the proposed method can achieve lower mean square error more than 20% than the conventional methods.
Keywords: Physics-informed neural networks; Dynamic state estimation; Graph neural networks; Kalman filter (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923019669
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019669
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122602
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().