EconPapers    
Economics at your fingertips  
 

Optimization control strategy for mixed-mode buildings based on thermal comfort model: A case study of office buildings

Ying Yu, Tianhui Xiang, Di Wang and Liu Yang

Applied Energy, 2024, vol. 358, issue C, No S0306261924000102

Abstract: Mixed-mode (MM) buildings reduce air conditioning (AC) energy consumption while maintaining indoor thermal comfort through the appropriate use of natural ventilation (NV). The objective of this investigation was to propose a method to determine the best NV operation range suitable for MM buildings and further to propose a change-over control strategy. First, the usual natural ventilation operating range (NV-range) was obtained based on the upper and lower comfort temperature limits of the adaptive comfort model. The usual NV-range was extended by adding threshold conditions, and then, it was divided into nine natural ventilation operation subranges (NVOSs). Second, the comfort and energy performance of each NVOS were analyzed through a co-simulation for an MM office building in Xi'an, China, as an example to obtain the optimal NV-range for the local climate. The results showed that the proposed optimal NV-range reduced the number of discomfort hours by 248.33 h while increasing the energy savings by 13.29% compared to those of the commonly used NV-ranges. Finally, the control scheme with the adaptive comfort model changed to the PMV model (ACM-PMV-CS) with the addition of a 1.5-h transition period was proposed in order to solve the problem of using the steady-state PMV model directly in the AC mode under the frequent switching conditions between the NV and AC modes. The results showed that ACM-PMV-1.5 h transition period resulted in a reduction in the number of discomfort hours (248.33 h) and a 35.46% increase in the energy savings compared to those of ACM-PMV-CS without a transition period.

Keywords: Mixed-mode buildings; Thermal comfort; Natural ventilation; Adaptive comfort model; PMV model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924000102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000102

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122627

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000102