Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach
Xin Lu,
Jing Qiu,
Cuo Zhang,
Gang Lei and
Jianguo Zhu
Applied Energy, 2024, vol. 358, issue C, No S0306261924000114
Abstract:
A virtual power plant (VPP) is typically a collection of distributed energy resources (DERs) aggregated by an energy service provider (ESP). However, recruiting DER owners to participate in a VPP is challenging. Therefore, we propose a profitable and flexible VPP recruitment-participation approach that incorporates both long-term regular recruitment and short-term casual recruitment. Casual recruitment caters to ambitious DER participants, consisting of fair and bet-on modes. The latter establishes a set of pre-determined payoff conditions, the fulfillment or non-fulfillment of which confers the participants a contractual right to get compensation from the ESP. To ensure the success of the proposed recruitment approach, we address two key problems. First, we introduce a new index, unconventional arbitrage opportunity (UAO), for evaluating future profits and propose a conditional time series generative adversarial network to predict UAO with weather conditions. Second, we introduce a payoff allocation method that combines fairness and incentives to motivate casual DER participants. The incentive coefficients are optimized using an improved deep reinforcement learning algorithm. Case studies are conducted to verify the proposed recruitment-participation approach, the effectiveness of the UAO prediction model, and the optimized incentive coefficients.
Keywords: Casual recruitment; Deep reinforcement learning; Incentive coefficients optimization; Virtual power plant; Unconventional arbitrage opportunity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924000114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122628
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().