Evaluation of phase change thermal storage in a cascade heat pump
Ransisi Huang,
Allison Mahvi,
Nelson James,
Eric Kozubal and
Jason Woods
Applied Energy, 2024, vol. 359, issue C, No S0306261924000370
Abstract:
This study proposes a low-global warming potential cascade heat pump system with integrated phase change material (PCM) for combined space heating and cooling. PCM is embedded in the intermediate heat exchanger that couples an outdoor R290 refrigerant circuit and an indoor CO2 circuit. We used a clustering method to develop seasonally representative load and ambient temperature profiles for residential buildings in Minneapolis, Minnesota. We simulated the system peak shaving performance on the selected representative days, assuming three different PCM options including ice (0 °C), tetradecane (5.6 °C), and a commercially available PCM, SP9 (10.5 °C). The baseline was the same cascade system without thermal storage. We investigated the effect of both thermal energy storage capacity (kWhth) and PCM transition temperature on system performance. The results show that higher thermal energy storage capacity shaves more electric energy until it reaches a maximum value set by the load characteristics of the building. SP9, with the highest transition temperature, shaves the most electric energy, while ice shaves the least. Moreover, ice has the highest charging cost, especially in the cooling season when the outdoor circuit has to operate at an evaporating temperature lower than 0 °C to make ice. Our results show that SP9 presents the lowest levelized cost of storage, closely followed by ice. A lower off-peak electricity rate benefits ice more than SP9 or tetradecane because ice has the largest charging cost penalty.
Keywords: Thermal energy storage; Cascade heat pump; Low-GWP refrigerants; Ice; Phase change material; Levelized cost of storage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924000370
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000370
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122654
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().