EconPapers    
Economics at your fingertips  
 

A hybrid model-data-driven framework for inverse load identification of interval structures based on physics-informed neural network and improved Kalman filter algorithm

Yaru Liu, Lei Wang and Bing Feng Ng

Applied Energy, 2024, vol. 359, issue C, No S0306261924001235

Abstract: Accurately capturing data on the external loads that large structural systems endure is crucial for improving the performance of energy equipment. This paper introduces a novel hybrid model-data-driven framework for the dynamic load identification of interval structures, which seamlessly combines finite-element modeling with machine learning techniques. To address potential ill-posed issues in model-driven methods and the interpretability limitations of data-driven methods, we propose a physics-informed neural network. This neural network effectively inverts uncertain modal responses with low data requirements and high predictive performance high by integrating the underlying modal transformation equation into the loss function of a fully connected neural network. To identify the modal loads using predicted modal displacement/acceleration responses, we introduce a pioneering dynamics inversion method. This method modifies the traditional Kalman filter with an assumption of unknown inputs to reduce the sensitivity of load identification process to different noises. In addition, our approach incorporates a subinterval Chebyshev expansion method to adaptively determine the interval boundaries of external loads. The efficiency of the proposed method is assessed through two numerical examples and validated through comparative research against baseline methods. Our findings suggest that this approach enhances precision, robustness, and generalization in dynamic load identification, even when facing challenges such as limited training data, significant noise interference, and non-zero initial conditions.

Keywords: Dynamic load identification; Model-data-drive method; Physics-informed neural network; Kalman filter algorithm; Interval structures (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924001235
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001235

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122740

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001235