A hybrid method based on logic predictive controller for flexible hybrid microgrid with plug-and-play capabilities
Muhammed Cavus,
Adib Allahham,
Kabita Adhikari and
Damian Giaouris
Applied Energy, 2024, vol. 359, issue C, No S0306261924001351
Abstract:
Controlling flexible hybrid microgrids (MGs) is difficult due to the system’s complexity, which includes multiple energy sources, storage devices, and loads. Although adding new components to the MG system through the plug-and-play (PnP) feature enables operating of the system in different modes, it adds to the system’s complexity, hence necessitates careful control system design. The most challenging aspect of designing the control system is ensuring that it can control the MG optimally in its various modes of operation. Previous methods based on logical control allow for synthesizing a controller capable of controlling the MG in its various operational modes. However, the resultant controller does not optimally operate the MG. Classical model predictive control allows optimal control of the MG only in specific operating modes. On the other hand, switched model predictive control (S-MPC) can optimally control the MG in its various modes. However, the design of S-MPC is complex, particularly for MGs with many operating modes or complex switching logic. Multiple factors contribute to the complexity, including model development, mode detection, and switching logic. This paper presents a hybrid method based on ɛ-variables and classical MPC for constructing the S-MPC for flexible hybrid MG with PnP capabilities. Our results show that the proposed controller synthesis approach provides an effective solution for optimally controlling flexible hybrid MGs with PnP capabilities as the proposed method enables: (i) an increase in the amount of energy export to the utility grid by 50.77% and (ii) a significant decrease in the amount of energy import from the grid by 46.7%.
Keywords: Control and optimization; Energy management; ε-variables; Logical control; Microgrid; Switched model predictive control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924001351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001351
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122752
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().