Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application
A. Selim Türkoğlu,
Burcu Erkmen,
Yavuz Eren,
Ozan Erdinç and
İbrahim Küçükdemiral
Applied Energy, 2024, vol. 360, issue C, No S0306261924001053
Abstract:
Considering the electricity market, data analytics paves the way for completely new strategies regarding demand and supply-side policies. In this manner, predictive analysis of the demanded power accuracy is carried out to boost profits and increase the penetration of similar demand response (DR) programs across all levels of end-user categories. Residential loads experience stiff spikes and unpredictable variations due to occupancy activities and environmental factors. To address this, we first propose a robust short-term multivariate-multistep forecasting framework that is resilient to missing or erroneous data, employing temporal convolution networks (TCNs). We then incorporate two distinct valley-filling indices to optimize the charging of electric vehicle loads according to DR requirements, showcasing the efficacy of leveraging artificial intelligence to enhance the utilization of clean energy resources. Simulation studies are conducted using real-world nodal residential loads with hourly granularity. The results demonstrate that the forecasting method is reliable for residential locations, even when dealing with highly damaged data. The case studies effectively fill the load into the valleys and minimize fluctuations in residential locations. Through the integration of emission-aware forecasting and optimization strategies, our study lays the groundwork for a comprehensive approach that not only improves economic outcomes and grid stability but also advances the imperative of reducing carbon emissions.
Keywords: Demand response; Electric vehicle; Hierarchical load forecasting; Mixed-integer linear programming; Temporal convolutional networks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924001053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001053
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122722
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().