EconPapers    
Economics at your fingertips  
 

Exergy-driven optimal operation of virtual energy station based on coordinated cooperative and Stackelberg games

Meng Song, Jianyong Ding, Ciwei Gao, Mingyu Yan, Mingfei Ban, Zicheng Liu and Wenchao Bai

Applied Energy, 2024, vol. 360, issue C, No S0306261924001533

Abstract: Virtual Energy Stations (VESs) can aggregate customer-side Integrated Energy Systems (IESs) to participate in electricity and natural gas markets. It helps to promote the synergies among different energies, lower IESs' energy cost, and balance the supply and demand of power systems. This paper proposes an exergy-driven optimal scheduling method of VES based on coordinated cooperative and Stackelberg games to regulate IESs via demand response (DR) effectively and economically. Firstly, the VES operation framework with equal exergy replacement is developed to unify the energy adjustment and conversion of IESs for less energy cost and lower economic loss risk. Secondly, the scheduling models of VES and IESs based on Cooperative and Stackelberg Games are proposed. VES forms a cooperative alliance with IESs to respond to external energy markets' price fluctuations for overall benefit maximization. Then the Stackelberg game theory is employed to characterize the interest-conflict behaviors of VES and IESs. It can maximize the overall interests of VES and IES, achieve more flexibility from IESs, and improve IESs' enthusiasm in DR. Thirdly, the equilibrium solution existence of the VES optimal scheduling model based on game theories is proved. A distributed solution method based on the Alternating Direction Method of Multipliers (ADMM) algorithm is provided to avoid the privacy information leakage of VES and IESs. Simulation results show that VES takes the main risks caused by the energy market prices' fluctuations, which helps to increase the enthusiasm of IESs in DR. And the proposed incentive mechanism has superior properties compared to the sole cooperative game or Stackelberg game.

Keywords: Virtual energy station; Integrated energy system; Cooperative game; Stackelberg game; Distributed optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924001533
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001533

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122770

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001533