EconPapers    
Economics at your fingertips  
 

Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism

Ke Li, Yuchen Mu, Fan Yang, Haiyang Wang, Yi Yan and Chenghui Zhang

Applied Energy, 2024, vol. 360, issue C, No S0306261924002046

Abstract: In integrated energy systems (IESs), reliable planning and operation are challenging owing to significant uncertainties in energy production, utilization, and trading. To this end, this paper proposes a multi-task joint forecasting method that enables joint source-load-price forecasting. First, three uncertain variables in an IES, namely, renewable energy, the multi-energy load, and the energy price, were investigated and the complex coupling relationships among them were validated. Second, to cope with the redundant noise resulting from various inputs, multi-channel feature extraction and a hybrid attention mechanism were combined to enable separate extraction and unified fusion of features. Additionally, considering the unique one-dimensional input in the prediction domain, a sequential convolution attention module (SCAM) with a hybrid channel and temporal attention mechanism was proposed to guide multi-channel feature fusion. Finally, facing the challenge of multi-layer coupling information learning, a multi-task learning (MTL) integrated shared layer was designed. Based on the coordinated with MTL, multi-column convolutional neural network, SCAM and long short-term memory network, joint forecasting of source-load-price was realized. The simulation results showed that the average mean absolute percentage error of the proposed model was as low as 4.10% in source-load-price long-term forecasting, while that of winter short-term forecasting could reach 3.14%. In addition, the here proposed model was found to be superior to others in terms of computational efficiency and result stability.

Keywords: Integrated energy system; Joint forecasting; Multi-task learning; Attention mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002046
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002046

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122821

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002046