Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization
Zhetong Ding,
Yaping Li,
Kaifeng Zhang and
Jimmy Chih-Hsien Peng
Applied Energy, 2024, vol. 360, issue C, No S0306261924002125
Abstract:
Traditional virtual power plants (VPPs) with fixed resource composition and coordination strategies struggle to cost-effectively exploit the flexibility of large-scale resources for adapting variable regulation requirements and resources characteristics. To this end, this paper proposes a dynamic aggregation mechanism to flexibly select and coordinate individual resources for forming aggregators according to grids regulation requirements and resource characteristics. The proposed mechanism is operated through a two-stage dynamic aggregation model comprising resource selection and coordination. Considering the two-stage dynamic aggregation model is a combinational optimization problem with high computational complexity, the submodular optimization method is utilized to swiftly address this problem. First, the complementarity and submodularity of the dynamic aggregation process are formulated to elaborate how the aggregation regulation characteristics (ARCs) evolve with flexible resource composition and coordination. Next, a submodularity-based algorithm is developed to promptly solve dynamic aggregation model under three scenarios, where aggregation operators focus on the resources quantity, quality, and cost-effectiveness, respectively. The polynomial computational complexity of the proposed algorithm has also been evaluated. Simulations using the IEEE 39-bus (New England) system consists of 10,000 flexible resources were executed to assess the submodularity approach. The proposed algorithm demonstrates superior computing speed and better performance guaranteed results (90%, 97%, 90% in three scenarios) compared to other methods—making it more suitable for implementation in practice.
Keywords: Dynamic aggregation; Virtual power plants; Submodular optimization; Primary frequency regulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002125
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002125
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122829
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().