A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis
Qiliang Wang,
Yao Yao,
Yongting Shen,
Zhicheng Shen and
Hongxing Yang
Applied Energy, 2024, vol. 360, issue C, No S0306261924002174
Abstract:
The parabolic trough collector is widely recognized as the leading and mature technology for concentrated solar thermal applications, allowing for the generation of high-temperature thermal energy. However, the parabolic trough collector still faces challenges in achieving high solar-thermal efficiency due to significant radiation heat loss incurred, particularly under high operating temperatures. To address this issue and maximize the capture of solar irradiation, a novel parabolic trough collector system integrated with photovoltaic cells and a high-reflective coating was proposed. The proposed novel systems in different configurations were manufactured and tested in the indoor solar simulator laboratory to assess their feasibility and performance. Additionally, a comprehensive mathematical model regarding the novel system was developed and validated by the experiments. This study then involved assessing the potential application of the novel parabolic trough collector system in a concentrated solar power plant. And the overall techno-economic performance of the novel power plant was analyzed and evaluated for three typical areas across the globe. The results showed that the novel configurations of photovoltaic cells and high-reflective coating in the proposed system exert excellent roles in significantly improving the efficiency of the solar irradiance utilization and reducing the radiation heat loss. Compared to the prototype power plant, the proposed power plant with the novel system possessed superior techno-economic performance, including a significant improvement of 10.1% in annual power output, a noteworthy reduction of 87.0% in electricity consumption for annual freeze protection, and an effective reduction of 6.9% in levelized cost of electricity.
Keywords: Parabolic trough collector (PTC); Photovoltaic (PV); Photo-electrical/thermal; Techno-economic; Concentrated solar power (CSP) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002174
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002174
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122834
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().