EconPapers    
Economics at your fingertips  
 

Very high temperature BTES: A potential for operationally cost-free and emission-free heating

Ece Ekmekci, Murat Aydin, Z. Fatih Ozturk and Altug Sisman

Applied Energy, 2024, vol. 360, issue C, No S0306261924002423

Abstract: In cold climates, the heating load is much higher than the cooling load and borehole thermal energy storage (BTES) systems offer an opportunity for high-efficient heating. Heat energy from different sources is stored in the ground to use in wintertime. Higher storage temperatures lower the operating cost of heating and the size of the BTES field. BTES systems, up to 90℃, are studied in the literature. In this study, we consider the charge temperatures beyond 100℃ to analyze the possibility of free-heating for Nordic countries. The system is called here very high-temperature BTES (VHT-BTES). A residence field of 25 houses, 125m2 each, is chosen as a mid-scale target and concentrated solar collectors (CSC) are used to charge VHT-BTES up to 140℃. A double-ring layout of ten boreholes is optimized to minimize the heat pump consumption. Free-heating and heat pump modes are activated for high and low borehole temperatures, respectively. The actual meteorological data for Uppsala/Sweden is used. The gradually increasing very high seasonal coefficient of performance values (SCOP), 8-23, are achieved using free-heating and heat pump modes together for the first four years. From the fifth year, all of the heating demand is basically met by the stored energy (free-heating). The results show that VHT-BTES provides practically operationally cost-free and emission-free heating even for a Nordic country. The return of investment is calculated as ten to fourteen years, depending on the cost of the additional land for CSC.

Keywords: Borehole thermal energy storage; Free heating; Zero energy buildings; Emission free heating (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002423
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002423

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122859

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002423