Mixed-integer non-linear model predictive control of district heating networks
Jelger Jansen,
Filip Jorissen and
Lieve Helsen
Applied Energy, 2024, vol. 361, issue C, No S0306261924002575
Abstract:
The use of model predictive control (MPC) to optimally control district heating (DH) networks can support the transition to a carbon-neutral heating sector. DH systems are inherently subject to non-linear physics and integer controls, which results in a mixed-integer non-linear program (MINLP). In this work, an MINLP-based MPC strategy is developed for the optimal control of a DH network, building upon an existing decomposition approach (combinatorial integral approximation). The main novelty of this work is the application of an integrated MINLP-based MPC to a DH network and its comparison to a non-linear program (NLP)-based MPC. To successfully develop this MINLP-based approach, the pycombina tool is efficiently integrated in the existing NLP-based MPC toolchain (TACO) and the concept of an augmented time horizon is introduced to manage dwell time constraints. The MINLP-based MPC is applied to two use cases: a relatively simple nine-zone terraced house and a more complex fourth generation DH network. The simulation study shows that the MINLP-based MPC yields a comparable control performance to that of a previously developed NLP-based MPC, but the CPU time is approximately eight times higher. However, the absence of a post-processing step (which requires ample engineering practice and time) and the improved match between the MPC’s controller model and the actual system show promise for the MINLP-based MPC to control complex DH networks.
Keywords: Fourth generation district heating; Mixed-integer non-linear optimisation; Model predictive control; Combinatorial integral approximation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002575
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002575
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122874
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().