EconPapers    
Economics at your fingertips  
 

A novel meta-learning approach for few-shot short-term wind power forecasting

Fuhao Chen, Jie Yan, Yongqian Liu, Yamin Yan and Lina Bertling Tjernberg

Applied Energy, 2024, vol. 362, issue C, No S0306261924002216

Abstract: Few-Shot Short-Term Wind Power Forecasting (FS-STWPF) is designed to develop accurate short-term wind power forecasting models with limited training data, reducing the losses suffered by wind farms and power systems due to the data scarcity. Based on the idea of extracting valuable knowledge from the source wind farms and then applying it to the target wind farm, a novel Meta-Learning approach (WG-Reptile) has been proposed in this paper. Building on the existing Reptile algorithm, two specific designs have been made in WG-Reptile for FS-STWPF: (1) Within-Task Samples Assignment method based on Operational Scenario (WTSAOS) has been proposed to improve the adaptability of the models to changing conditions. (2) Gradients Conflict Attenuation method based on Cosine Similarity (GCACS) has been proposed to enhance the effect of knowledge fusion from different source wind farms. Two open wind power forecasting datasets and three deep learning models have been used to implement 24-h-ahead FS-STWPF experiments with different amounts of training data. The results illustrate that the proposed WG-Reptile is able to outperform the other few-shot learning approaches. Intuitively, with only 30-day training data, the accuracy of the proposed WG-Reptile can be equivalent to the conventional supervised learning approaches trained on 6-month.

Keywords: Few-shot short-term wind power forecasting; Meta-learning; Deep learning; Few-shot learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002216
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:362:y:2024:i:c:s0306261924002216

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122838

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924002216