Optimizing performance for cooling electronic components using innovative heterogeneous materials
F. Salmon,
H. Benisi Ghadim,
A. Godin,
D. Haillot,
A. Veillere,
D. Lacanette and
M. Duquesne
Applied Energy, 2024, vol. 362, issue C, No S0306261924003660
Abstract:
The relentless advancement of electronic devices has led to increased power densities, resulting in thermal challenges that threaten device reliability. This study aims to address this issue through the development of innovative heterogeneous materials for cooling electronic components. We focus on phase change materials (PCMs) impregnated within architected porous structures fabricated using additive manufacturing technology and 3D printing techniques. The objective is to leverage numerical simulations and additive manufacturing technology to select suitable materials and optimize heat dissipation within these structures. A comprehensive literature review of existing thermal management systems (TMS) for electronic devices, including mobile phones, laptops, and data centres, is presented. This review establishes a foundation for understanding the significance of TMS and introduces the benefits of employing PCMs in electronic devices. To assess the impact of the structure materials, we have run numerical simulations involving stainless steel, silver, Inconel, aluminium, copper, titanium, and steel architected porous structures impregnated with palmitic acid as the PCM. The results demonstrate the superior heat dissipation of silver, copper, and aluminium porous structures, attributed to their higher thermal diffusivities. Other simulations explore PCMs with higher melting temperatures and latent heat capacities, considering specific application parameters like mobile phones and laptops. By integrating three organic PCMs (Myristic acid, Palmitic acid, and Stearic acid) within architected matrices, it offers a promising solution in the choice of PCMs to the challenges posed by high power densities in electronics. This approach deepens our understanding of the melting process and allows the optimization of heat transfer within architected structures.
Keywords: Electronic devices; Thermal management systems; Phase change materials; Triply periodic morphologies; Heat transfer; Architected porous structure (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003660
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122983
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().