EconPapers    
Economics at your fingertips  
 

Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

Lingfeng Ye, Diankai Qiu, Linfa Peng and Xinmin Lai

Applied Energy, 2024, vol. 362, issue C, No S0306261924003702

Abstract: Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.

Keywords: Gas diffusion layer; Conductivity; Graph theory model; Microstructure optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003702
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003702

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122987

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003702