EconPapers    
Economics at your fingertips  
 

Modeling the impact of extreme summer drought on conventional and renewable generation capacity: Methods and a case study on the Eastern U.S. power system

Hang Shuai, Fangxing Li, Jinxiang Zhu, William Jerome Tingen and Srijib Mukherjee

Applied Energy, 2024, vol. 363, issue C, No S030626192400360X

Abstract: Across recent years, there has been a growing prevalence of extreme weather events throughout the United States, posing significant challenges to the reliable and resilient operation of power systems. Specifically, summer droughts threaten to severely reduce available generation capacity to meet regional electricity demand, potentially leading to power outages. This underscores the importance of accurate resource adequacy (RA) assessment to ensure the reliable operation of the nation’s energy infrastructure. Accurately evaluating the usable capacity of regional generation fleets is a challenging undertaking due to the intricate interactions between power systems and hydro-climatic systems. This paper proposes a systematic and analytical framework to evaluate the impacts of extreme summer drought events on the available capacity of various generating technologies, incorporating both meteorological and hydrologic factors. The framework provides detailed plant-level capacity derating models for hydroelectric, thermoelectric, and renewable power plants, facilitating evaluations with high temporal and spatial resolution. The application of the proposed impact assessment framework to the 2025 generation fleet of the real-world power system within the PJM and SERC regions of the United States yields insightful results. By analyzing the daily usable capacity of 6,055 at-risk generators across the study region, it shows that the summer capacity deration is most significant for hydroelectric and once-through thermal power plants, followed by recirculating thermal power plants and combustion turbines. In the event of the recurrence of the 2007 southeastern summer drought event in the near future, the generation fleet could experience a substantial reduction in available capacity, estimated at approximately 8.5 GW, compared to typical summer conditions. The sensitivity analysis reveals that the usable capacity of the generation fleet would suffer an even more significant decrease under conditions of increasingly severe summer droughts. The proposed approach and the findings of this study provide valuable methodologies and insights, empowering stakeholders to bolster the resilience of power systems against the potentially devastating effects of future extreme drought events.

Keywords: Power system resilience; Drought; Generating capacity; Extreme weather; Climate change (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400360X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s030626192400360x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122977

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400360x