Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces
Hu Zhang,
Wei Tian,
Jingyuan Tan,
Juchao Yin and
Xing Fu
Applied Energy, 2024, vol. 363, issue C, No S0306261924004252
Abstract:
Sensitivity analysis has been widely used in building energy analysis to identify key variables influencing building energy and carbon emissions. However, most previous studies only focus on the single time scale energy use of buildings when conducting sensitivity analysis. The multiple time-scale sensitivity analysis would lead to increased complexity and challenges in building energy analysis. This paper proposes a new systematical procedure for global variance-based sensitivity analysis of multiple time-scale energy use of buildings. A case study of an office building is used to demonstrate the application of this approach using the Bayesian adaptive spline surface (BASS) models at three different time scales (annual, monthly, and daily). The results indicate that the procedure proposed here can provide fast and reliable sensitivity results for the multiple time-scale building energy assessment. The BASS learning models have the advantages of high predictive performance and the fast computation of sensitivity indicators in a closed form without Monte Carlo integrals. The application of principal component analysis can deal with the highly correlated multi-output energy use at a smaller time scale, which can further reduce computational costs. Moreover, the sensitivity analysis at the different time scales can provide new insights into energy characteristics due to the intrinsic variations of weather conditions. This systematical procedure can provide useful guidance for the multiple time-scale model calibration and multi-step ahead predictions of buildings. Moreover, the method proposed here can be extended to the sensitivity analysis of energy use in different time scales (sub-hourly, hourly, or daily) for other energy systems (such as PV, solar thermal, and wind).
Keywords: Sensitivity analysis; Building energy; Multiple time scales; Bayesian adaptive spline surfaces; Principal component analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004252
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004252
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123042
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().