EconPapers    
Economics at your fingertips  
 

Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data

Paul Takyi-Aninakwa, Shunli Wang, Guangchen Liu, Alhamdu Nuhu Bage, Etse Dablu Bobobee, Emmanuel Appiah and Qi Huang

Applied Energy, 2024, vol. 363, issue C, No S0306261924004392

Abstract: Accurately estimating the state of charge (SOC) of lithium-ion batteries by the battery management system (BMS) is crucial for efficient energy management and power distribution control in electric vehicles (EVs). By far, data-driven methods have been extensively used in estimating the SOC of lithium-ion batteries to efficiently operate EVs with limited resources. However, the learning ability of these methods needs further enhancement. Therefore, this paper aims to analyze the SOC performance of an extended-input long short-term memory (ELSTM) model. The inputs of the ELSTM are improved with identified battery parameters based on an adaptive multi-timescale identification method with frequency difference decomposition. Second, an adaptive singular value decomposition-transformed unscented Kalman filter (ASVDUKF) is proposed to integrate all unknown variables and guarantee the positive definiteness of the error covariance matrix into a vector to form a multi-fusion model that robustly outputs the denoised and optimized SOCs based on the estimations of the ELSTM. The SOC results demonstrate that the ELSTM outperforms the LSTM, which uses conventional input data. Following that, the ELSTM-ASVDUKF model ensures high accuracy and stability with optimal mean absolute error, root-mean-square error, and mean absolute percentage error of 0.0939%, 0.1074%, and 0.1257%, respectively. The proposed model is validated using various full-cycle current rate and temperature data from two different batteries, establishing it as a promising solution for future development.

Keywords: Lithium-ion battery; State of charge; Extended-input long short-term memory; Adaptive multi-timescale identification method; Adaptive singular value decomposition-transformed unscented Kalman filter (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004392
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004392

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123056

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004392