Load configuration impact on energy community and distribution grid: Quantifying costs, emissions and grid exchange
Kjersti Berg,
Alejandro Hernandez-Matheus,
Mònica Aragüés-Peñalba,
Eduard Bullich-Massagué and
Hossein Farahmand
Applied Energy, 2024, vol. 363, issue C, No S0306261924004434
Abstract:
Energy communities are emerging across Europe, and each country is currently in the process of forming regulations for their integration into the electricity grid. The efficacy of energy communities depends upon various factors, including member demographics, technological aspects, load profiles, solar irradiation, and spot prices within the community’s geographical location. Notably, existing studies on energy communities predominantly focus on residential load profiles, with limited exploration into their impact on the distribution grid. This article aims to contribute to the existing literature by investigating the benefits of energy communities and their grid impact under diverse member configurations. Our approach involves the development of an optimisation model incorporating battery energy storage and shiftable loads, aimed at minimising the operational costs of energy communities over a one-year period. Case studies in Norway and Spain, with different load configurations: residential, commercial, and mixed load, are undertaken, utilising real hourly measurements to identify operational variations influenced by geographical location and seasonal fluctuations in load and photovoltaic (PV) generation. Additionally, we quantify the costs, CO2 emissions, and self-consumption rates for energy communities. Furthermore, we assess the distribution grid impact in terms of import and export dynamics. The results underscore the substantial influence of load configurations on member benefits and distribution grid impacts, attributable to the inherent correlation between load and PV generation. In the context of energy community benefits, commercial loads demonstrate the best outcomes in Norway, whereas residential loads exhibit superior results in Spain. Conversely, concerning distribution grid impact, commercial loads prove most advantageous in Norway, while mixed loads yield the best results in Spain. Overall, our findings indicate that Spanish energy communities consistently achieve more substantial reductions in costs and CO2 emissions compared to their Norwegian counterparts, irrespective of the load configuration. This study contributes valuable insights for policymakers, researchers, and industry stakeholders involved in the development and regulation of energy communities across Europe.
Keywords: Energy community; Distribution grid; Load profiles; Optimisation; Batteries; Load shifting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004434
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123060
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().