Unsupervised separation of the thermosensitive contribution in the power consumption at a country scale
Charles Dampeyrou,
Antoine Goichon,
Martin Ghienne,
Valentin Tschannen and
Sofiane Schaack
Applied Energy, 2024, vol. 363, issue C, No S030626192400480X
Abstract:
A large part of French electricity consumption variation is due to temperature fluctuations. While HVAC (heating, ventilation and air-conditioning) systems consumption are directly affected by the temperature, other systems (refrigerator, freezer, water heater) can also be driven by weather changes making thermal contribution to overall consumption difficult to extract. This paper presents a “by-design” unsupervised data-driven method to separate the consumptions due to the weather in the overall electricity consumption. The proposed deep-learning model is based on the separation of meteorological parameters from calendar ones within the model architecture. The performances of this model, in particular its ability to split consumption mechanisms, is tested on a synthetic dataset and on the french consumption dataset. Being relatively simple and interpretable, this approach can be generalized to other countries whereasenergy sobriety represents an important challenge we are facing.
Keywords: Thermosensitivity; Electric energy modeling; Non-Intrusive load disaggregation; Deep-learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400480X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s030626192400480x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123097
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().