EconPapers    
Economics at your fingertips  
 

Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar

Alessandro Sebastiani, Nikolas Angelou and Alfredo Peña

Applied Energy, 2024, vol. 364, issue C, No S0306261924003684

Abstract: Most wind turbines are installed inside wind farms, where they often operate under wake-affected inflow conditions. New methods are required to evaluate the power performance of a wind turbine in wake, as the International Electrotechnical Commission (IEC) standard procedure is applicable only to wake-free turbines. In this work, we investigate the accuracy of a multivariate power curve acquired through a polynomial regression, whose input variables are wind speed and turbulence measurements retrieved upstream of the turbine’s rotor. For this purpose, we use measurements from the SpinnerLidar, a continuous-wave, scanning Doppler lidar measuring the turbine inflow. The SpinnerLidar was mounted in the spinner of a Neg Micon 80 wind turbine located within an onshore wind farm in western Denmark. The input variables are selected among the available lidar measurements with a feature-selection algorithm, resulting in seven input variables, distributed in different locations along the rotor area: six wind speed and one turbulence measurements. The multivariate power curve is tested and compared with IEC-similar power curves under both wake-affected and wake-free conditions. Results show that the multivariate power curve estimates the turbine’s power output more accurately than the IEC-similar power curves, with error reductions up to 66.5% and 34.2% under wake-affected and wake-free conditions, respectively. Furthermore, the multivariate power curve estimates have an accuracy of the same order under both wake-affected and wake-free conditions. Finally, we show that the multivariate model accurately predicts the power even when a simple measuring geometry is used, such as circular scanning pattern with a diameter equal to 90% of the rotor.

Keywords: Lidar; Power curve; Wake; Multivariable regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003684
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924003684

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122985

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924003684