Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar
Alessandro Sebastiani,
Nikolas Angelou and
Alfredo Peña
Applied Energy, 2024, vol. 364, issue C, No S0306261924003684
Abstract:
Most wind turbines are installed inside wind farms, where they often operate under wake-affected inflow conditions. New methods are required to evaluate the power performance of a wind turbine in wake, as the International Electrotechnical Commission (IEC) standard procedure is applicable only to wake-free turbines. In this work, we investigate the accuracy of a multivariate power curve acquired through a polynomial regression, whose input variables are wind speed and turbulence measurements retrieved upstream of the turbine’s rotor. For this purpose, we use measurements from the SpinnerLidar, a continuous-wave, scanning Doppler lidar measuring the turbine inflow. The SpinnerLidar was mounted in the spinner of a Neg Micon 80 wind turbine located within an onshore wind farm in western Denmark. The input variables are selected among the available lidar measurements with a feature-selection algorithm, resulting in seven input variables, distributed in different locations along the rotor area: six wind speed and one turbulence measurements. The multivariate power curve is tested and compared with IEC-similar power curves under both wake-affected and wake-free conditions. Results show that the multivariate power curve estimates the turbine’s power output more accurately than the IEC-similar power curves, with error reductions up to 66.5% and 34.2% under wake-affected and wake-free conditions, respectively. Furthermore, the multivariate power curve estimates have an accuracy of the same order under both wake-affected and wake-free conditions. Finally, we show that the multivariate model accurately predicts the power even when a simple measuring geometry is used, such as circular scanning pattern with a diameter equal to 90% of the rotor.
Keywords: Lidar; Power curve; Wake; Multivariable regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003684
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924003684
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122985
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().