EconPapers    
Economics at your fingertips  
 

Intraday two-stage hierarchical optimal scheduling model for multiarea AC/DC systems with wind power integration

Dong Yu, Shan Gao, Haiteng Han, Xin Zhao, Chuanshen Wu, Yu Liu and Tiancheng E. Song

Applied Energy, 2024, vol. 364, issue C, No S0306261924004628

Abstract: To make full use of the flexible adjustment capability of DC tie-lines in multiarea AC/DC systems and to coordinate the generation resources and load demand of multiarea AC/DC systems, this paper presents an intraday two-stage hierarchical optimal scheduling model for multiarea AC/DC systems based on analytical target cascading (ATC). To avoid repeated adjustment and overadjustment of DC tie-lines after wind power integration, a two-stage rolling coordinated scheduling model for the area subsystem based on model predictive control (MPC) is proposed. The two-stage rolling coordinated scheduling method takes into consideration the influence of the predicted value in the future finite time domain and the latest measured DC tie-line power on the current scheduling state. Based on the ATC and the area decomposition criterion of the AC/DC grid, an optimal scheduling model for the upper-level system is proposed that takes into consideration the DC tie-line adjustment constraints and the area coupling constraints. The optimal scheduling model for the upper-level system formulates the two-stage DC tie-line plan for the multiarea AC/DC system, and the two-stage rolling coordinated scheduling model of the area subsystem solves the subproblems of the generation plan for each area subsystem in a parallel manner considering the area coupling constraints. The proposed method can achieve intraday two-stage decoupling scheduling of multiarea AC/DC systems and promote the cross-area consumption of large-scale wind power through flexible adjustment of the DC tie line. This approach also reduces the communication burden between the area subsystems and ensures the efficiency of the solution algorithm.

Keywords: Multiarea AC/DC systems; Two-stage rolling coordinated optimal scheduling; Area coupling constraints; Analytical target cascading (ATC); Model predictive control (MPC) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004628
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004628

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123079

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004628