EconPapers    
Economics at your fingertips  
 

Design and optimization of a geothermal absorption cooling system in a tropical climate

Charles Maragna, Amín Altamirano, Brice Tréméac, Florent Fabre, Laurène Rouzic and Pierre Barcellini

Applied Energy, 2024, vol. 364, issue C, No S0306261924004859

Abstract: The electricity required for air conditioning is soaring worldwide. Absorption chillers represent an alternative to classical vapor compression systems, using heat instead of electricity. However, absorption chillers powered by renewable geothermal heat have received little attention so far. This paper introduces a system using a hot geothermal fluid (typically in the range of 80–110 °C) to produce cooling through a single-effect absorption chiller, and Domestic Hot Water (DHW) through a heat exchanger. It considers a hotel located in Martinique, a French Caribbean island. The electric consumption of every subsystem has been thoroughly estimated. The originality of this paper is twice: i) the system is modelled in TRNSYS software considering dynamic conditions, ii) the system undergoes surrogate modelling and multi-objective optimization to minimize both the cost and the CO2 content of the delivered thermal energy. Several scenarios are considered, depending upon the geothermal temperature, mass flow rate, well remoteness, and demand size. The studied system appears to be systematically more expensive than a combination of a classical vapor compression chiller and a boiler for DHW. However, it can significantly decrease the CO2 content of the provided energy, especially in an island where most electricity is generated from fossil fuels. The proximity of the geothermal well and the use of the warm water leaving the absorption generator (here for DHW production) appear to be key factors for system relevance, along with a hotter geothermal fluid (e.g., 110 °C instead of 80 °C).

Keywords: Air conditioning; Tropical climate; Absorption chiller; Geothermal energy; Surrogate modelling; Energy system optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004859
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004859

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123102

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004859