EconPapers    
Economics at your fingertips  
 

Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors

Huazhi Yuan, Jikang Liu, Chaohui Wang, Shuai Wang and Hongyun Cao

Applied Energy, 2024, vol. 364, issue C, No S0306261924004963

Abstract: Collecting and converting renewable energy from the road environment relieves pressure on energy supply for road-based sensing and monitoring, and simplify the process of road grid installation. Aiming at the characteristic of mechanical vibration energy collection, the internal structure of the piezoelectric device is optimized. The dowel bar structure is optimized by comparing the output power and stress distribution characteristics, while the actuation mode is selected based on the measured electrical output level and output stability. Then, based on the limit distance of single and dynamic loading, the range of actuation distance under different conditions is clarified. Finally, the electrical performance and application of energy harvester with optimized internal structure are systematically evaluated. The results indicate that the force-electric properties of the energy harvester are superior under the action of the cylinder, the actuation mode of the energy harvester driven by the dowel bar is conducive to improving the electrical performance. The upper limit of actuation distance under high traffic conditions is 1.3 mm. Under long-term high-frequency condition, the power density of the energy harvester can reach 14,726.67 W/m3, and the voltage has almost no attenuation after 100,000 continuous loads. The proposed internal structure improves the electrical performance and durability of the energy harvester, which is conducive to the development of self-powered energy supply for road sensing technology.

Keywords: Energy harvesting; Piezoelectric energy harvester; Cantilever beam; Internal structure; Road engineering (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004963
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004963

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123113

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004963