Efficient water recovery and power generation system based on air-cooled fuel cell with semi-closed cathode circulation mode
Yuchen Yang,
Zhen Wu,
Bofei Wang,
Jing Yao,
Fusheng Yang,
Zaoxiao Zhang and
Jianwei Ren
Applied Energy, 2024, vol. 364, issue C, No S0306261924005087
Abstract:
Air-cooled proton exchange membrane hydrogen fuel cell with on-line hydrogen production by hydrolysis has potential for portable applications due to its high volumetric power density and self-humidification. However, plenty of reserve water significantly reduces the power density of fuel cell system. Moreover, water recovery from fuel cell tail gas is difficult, because the tail gas humidity is very low due to excess cathode air as coolant. In this work, the dead-ended anode and semi-closed cathode proton exchange membrane fuel cell is proposed to achieve efficient water recovery and energy conversion via semi-closed cathode circulation mode. In this mode, cathode O2-poor tail gas is recycled as coolant instead of fresh air, which helps to enlarge the tail gas humidity by reducing the stoichiometric ratio of cathode to anode gas. The system lumped model with detailed component description is developed for optimization. >96% water production can be recycled under atmosphere temperature. The demand of fresh air is greatly reduced from 56 to 2 times of the consumption. Besides, the multi-objective optimization between water recovery and electrochemical performance shows high-efficiency water recovery of 94.70% and high energy conversion efficiency of 54.82%.
Keywords: Air-cooled fuel cell; Water recovery; Self-humidification; Semi-closed cycle; Multi-objective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005087
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123125
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().