Neural network-based surrogate modeling and optimization of a multigeneration system
Parviz Ghafariasl,
Alireza Mahmoudan,
Mahmoud Mohammadi,
Aria Nazarparvar,
Siamak Hoseinzadeh,
Mani Fathali,
Shing Chang,
Masoomeh Zeinalnezhad and
Davide Astiaso Garcia
Applied Energy, 2024, vol. 364, issue C, No S0306261924005130
Abstract:
Multi-Objective Optimization (MOO) poses a computational challenge, particularly when applied to physics-based models. As a result, only up to three objectives are typically involved in simulation-based optimization. To go beyond this number, Surrogate Models (SMs) need to replace such high-fidelity models. In this exploratory study, the objectives are to perform comprehensive regression surrogate modeling and to conduct MOO for a Multi-Generation System (MGS). The most suitable SM was chosen among four neural-network models: Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and an ensemble model developed through brute-force search using the three aforementioned models. The final model was found to be superior to others, achieving R2 values ranging from 0.9830 to 0.9999. Next, an optimization problem with six conflicting objectives was defined and performed at four distinct values of Direct Normal Irradiation (DNI), a time-dependent feature. This aimed to provide multi-criteria decision-making information based on atmospheric transparency. As a result, new understandings were gained: (I) exergy efficiency, production cost, and freshwater production rate were found to be highly influenced by DNI, and (II) the critical range of operation was observed within the DNI interval of 100 to 400 W/m2. Furthermore, we compared the result of the six-objective optimization with that of the bi-objective optimization obtained in our simulation-based study and found that all objectives showed improvements ranging from 1.9% to 12.7%. Finally, based on the findings obtained in the present study, some practical recommendations were put forward for applying the proposed methodology to similar MGSs.
Keywords: Surrogate modeling; Artificial neural network (ANN); Long-short term memory (LSTM); Convolutional neural network (CNN); Multi-objective optimization; Multigeneration system (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123130
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().