EconPapers    
Economics at your fingertips  
 

Simulating the economic and health impacts of synergistic emission reduction from accelerated energy transition in Guangdong-Hong Kong-Macao Greater Bay Area between 2020 and 2050

Keyang Jiang, Ying Zhou, Zhihui Zhang, Shaoqing Chen and Rongliang Qiu

Applied Energy, 2024, vol. 364, issue C, No S0306261924005294

Abstract: The pace of energy transition plays a pivotal role in realizing cleaner air and combating climate change in the forthcoming decades. In this study, using a system-based model, we assessed and simulated the climatic, economic and health impacts of synergistic reduction of CO2 and primary air pollutants (i.e., NOX, SO2, PM2.5, and PM10) under different paths of accelerated energy transition in Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China over 2017–2050. We show that fast decarbonization of the energy system targeting China's carbon peaking and carbon neutrality goal may lead to 90% (270 Mt) more reduction of GBA's CO2 emissions between 2020 and 2050, compared to Business-As-Usual scenario, meanwhile all primary pollutants would be reduced by 70%–80%, much higher than the scenarios prioritizing energy safety (higher reliance on all fossil fuels) or cleaner energy use (higher demand on natural gas). While the synergistic emission reduction effect of SO2, PM2.5 and PM10 may decrease after 2035, the decarbonization-oriented energy transition could still be an efficient tool for simultaneously reducing NOX and CO2 by 2050. A reduction of 1 t CO2 would be accompanied by reduction of 1.7–1.8 kg NOX in 2050, 78–132% higher than that in 2030. Fast-decarbonizing energy transition may result in 20% reduction of GBA's GDP growth rate after 2030, although 16–49% of the economic loss could be offset by the abated pollution-related health expenditures and premature deaths. This highlights the need for a more balanced strategy to accelerate energy transition, achieving fast decarbonization while also reduing the detrimental economic and health impacts of air pollutants.

Keywords: Energy transition path; Synergistic emission reduction; Economic impact; Health benefit; Guangdong-Hong Kong-Macao Greater Bay Area (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005294
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005294

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123146

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005294