An analytical method for quantifying the flexibility potential of decentralised energy systems
Nailya Maitanova,
Sunke Schlüters,
Benedikt Hanke and
Karsten von Maydell
Applied Energy, 2024, vol. 364, issue C, No S0306261924005336
Abstract:
In this study, we developed a technology-independent method for quantifying the time-varying flexibility potential of different energy systems. As the flexibility of these systems was assumed to be an additional service, their primary application must not be undermined by flexibility provision; for example, providing flexibility from a heat pump must not threaten the space heating of a building. Therefore, the method developed for quantifying flexibility contains an estimation of the technology- and schedule-specific boundaries that consider the primary application of the energy systems. The time-varying flexibility potential of energy systems was proposed to be presented in a universal, two-dimensional, and technologically-agnostic form. It enabled to develop a method for aggregating the flexibility values from different energy systems. The developed methods were demonstrated on two case studies: the first included a calculation of the flexibility potential of a single battery storage (BS) system in a private household, and the second presented aggregation of the flexibility from multiple BS systems. The simulation proved that these BS systems could have provided flexibility additionally to their operation in compliance with the boundary values. In both case studies, the BS systems exhibited significant daily and seasonal variations in flexibility potential depending on the actual mode, operation in the following hours, local energy generation, and consumption. In general, the developed methods can be utilised to quantify and aggregate the time-varying flexibility potentials of energy systems, alongside their scheduled operation in the course of a single day as well as across seasons.
Keywords: Energy flexibility; Flexibility quantification; Flexibility aggregation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005336
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123150
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().